“KONSEP NILAI WAKTU DARI UANG”
PENDAHULUAN
LATAR BELAKANG
Di bab 8 ini saya membahas dari
sumber sumber yang memberikan informasi mengenai 'KONSEP DAN NILAI WAKTU DARI
UANG'. Tugas diberikan oleh Dosen Pengantar Bisnis Bpk Fitriansyah Hambali, SE,
MM.
RUMUSAN MASALAH
1. Nilai yang akan dating
2. Nilai sekarang
RUMUSAN MASALAH
1. Nilai yang akan dating
2. Nilai sekarang
3. Nilai masa datang dan nilai sekarang
4. Annunitas
Konsep Dasar :Bahwa setiap individu berpendapat bahwa nilai uang saat ini lebih berharga daripada nanti. Sejumlah uang yang akan diterima dari hasil investasi pada akhir tahun, kalau kita memperhatikan nilai waktu uang, maka nilainya akan lebih rendah pada akhir tahun depan. Jika kita tidak memperhatikan nilai waktu dari uang, maka uang yang akan kita terima pada akhir tahun depan adalah sama nilainya yang kita miliki sekarang.
Contoh 1 :Uang sekarang Rp 30.000,- nilainya akan sama dengan Rp 30.000 pada akhir tahun à kalau kita tidak memperhatikan nilai waktu unag, maka nilai uang sekarang adalah lebih tingi dari pada uang yang akan kita terima pada akhir tahun depan.
1. Nilai yang akan datang (Future Value)
Future value yaitu nilai uang yang akan diterima dimasa yang akan datang dari sejumlah modal yang ditanamkan sekarang dengan tingkat discount rate (bunga) tertentu.
Nilai waktu yang akan datang dapat dirumuskan sbb;
Future Value = Mo ( 1 + i )n
Mo = Modal awal
i = Bunga per tahun
n = Jangka waktu dana dibungakan
Contoh 1 :
Tuan Budi pada 1 januari 2005 menanamkan modalnya sebesar Rp. 10.000.000,-dalam bentuk deposito di bank selama 1 tahun, dan bank bersedia memberi bunga 10 % per tahun, maka pada 31 Desember
2005 Tuan Budi akan menerima uang miliknya yang terdiri dari modal ppoko ditambah bunganya.
Perhitungannya sebagai berikut:
Future Value = Mo ( 1 + i )n
FV = 10.000.000 ( 1 + 0.10 )1.
FV = 10.000.000 ( 1 + 0.10 ).
FV = 10.000.000 + 1.000.000 . FV = 11.000.000
Jadi nilai yang akan datang uang milik Tn Budi adalah Rp. 11.000.000,-
2. Nilai Sekarang (Present Value)
present value adalah nilai sejumlah uang yang saat ini dapat dibungakan untuk memperoleh jumlah yang lebih besar di masa mendatang.
Misalkan:
P: Nilai sekarang dari uang sebanyak A
t: Tahun yang akan datang.
r: Tingkat bunga
maka bunga yang dapat diperoleh dari P rupiah adalah :
I = P.r.
dan uang setelah t tahun menjadi :
P + P.r.t = P(1+rt)
Karena A adalah nilai uang sebanyak P pada t tahun mendatang, maka
P(1+rt) = A
Contoh :
Setahun lagi rudi akan menerima uang sebanyak Rp. 10.000,-. Berapakah nilai sekarang uang tersebut jika tingkat bunga adalah 13 % setahun?
Dalam masalah ini: A = 10.000,-. r = 0,13 dan t = 1
P = 10.000/ 1 + (0,13)(1)
= 8849,56
3. Nilai masa datang dan nilai sekarang
Nilai sekarang (Present value) merupakan modal dasar dan nilai masa datang (future value) merupakan penjabaran dari bunga majemuk.
4.
Anuitas
Anuitas
adalah suatu rangkaian penerimaan atau pembayaran tetap yang dilakukan secara
berkala untuk jumlah tahun yang telah ditetapkan atau suatu rangkaian
penerimaan dalam pembayaran tetap yang dilakukan secara berkala pada jangka
waktu tertentu.
ntu. Selain itu anuitas juga diartikan sebagai kontrak di mana perusahaan asuransi memberikan pembayaran secara berkala sebagai imbalan premi yang telah Anda bayar. Contohnya adalah bunga yang diterima dari obligasi atau dividen tunai dari suatu saham preferen.
ntu. Selain itu anuitas juga diartikan sebagai kontrak di mana perusahaan asuransi memberikan pembayaran secara berkala sebagai imbalan premi yang telah Anda bayar. Contohnya adalah bunga yang diterima dari obligasi atau dividen tunai dari suatu saham preferen.
• Anuitas biasa (ordinary)
anuitas
yang pembayaran atau penerimaannya terjadi pada akhir periode
• Anuitas terhutang
Anuitas terhutang adalah anuitas yang
pembayarannya dilakukan pada setiap awal interval. Awal interval pertama
merupakan perhitungan bunga yang pertama dan awal interval kedua merupakan
perhitungan bunga kedua dan seterusnya.
Rumus dasar future value anuitas
terhutang adalah :
FVn = PMT ( FVIFAi,n ) ( 1 + i )
Rumus dasar present value anuitas
terhutang adalah :
PVn = PMT ( PVIFAi,n ) ( 1 + i )
• Nilai Sekarang Anuitas
(Present Value Annuity)
Nilai Sekarang Anuitas adalah nilai hari
ini dari pembayaran sejumlah dana tertentu yang dilakukan secara teratur selama
waktu yang telah ditentukan. Dengan kata lain, jumlah yang harus anda tabung
dengan tingkat bunga tertentu untuk mandapatkan sejumlah dana tertentu secara
teratur dalam jangka waktu tertentu
• Nilai Sekarang Dari Anuitas
Terhutang
Berguna untuk mengukur setiap pembayaran yang maju
satu periode atau pembayaran pada awal tahun dengan menggunakan formulasi :
An (Anuitas Terhutang) = PMT (PVIFAk,n)(1+k)
An (Anuitas Terhutang) = PMT (PVIFAk,n)(1+k)
• Anuitas Abadi
Anuitas
Abadi adalah perpetuity yaitu anuitas dengan jangka waktu yang tidak terbatas dan diharapkan
akanberlangsung terus menerus.
Sebagian besar anuitas terbatas jangka waktunya secara definitif misalnya 5 tahun atau 7 tahun, tetapi terdapat juga anuitas yang berjalan terus secara infinitif disebut anuitas abadi (perpetuities).
PMT = PVA
Tingkat suku bunga i
Sebagian besar anuitas terbatas jangka waktunya secara definitif misalnya 5 tahun atau 7 tahun, tetapi terdapat juga anuitas yang berjalan terus secara infinitif disebut anuitas abadi (perpetuities).
PMT = PVA
Tingkat suku bunga i
• Nilai Sekarang dan Seri
Pembayaran Yang Tidak Rata
Dalam pengertian anuitas tercakup kata jumlah yang
tetap, dengan kata lain anuitas adalah arus kas yang sama di setiap periode.
Persamaan umum berikut ini bisa digunakan untuk mencari nilai sekarang dari
seri pembayaran yang tak rata:
Nilai sekarang anuitas abadi = pembayaran/tingkat diskonto = PMT/r
Nilai sekarang anuitas abadi = pembayaran/tingkat diskonto = PMT/r
• Periode
Kemajemukan tengah tahunan atau periode lainnya
Bunga majemuk tahunan adalah proses aritmatika untuk menentukan nilai akhir dari arus khas atau serangkaian arus kas apabila suku bunga ditambahkan satu kali dalam setahun. Sedangkan bunga majemuk setengah tahunan adalah proses aritmatika untuk menentukan nilai akhir dari arus khas atau serangkaian arus kas apabila suku bunga ditambahkan dua kali dalam setahun.
Bunga majemuk tahunan adalah proses aritmatika untuk menentukan nilai akhir dari arus khas atau serangkaian arus kas apabila suku bunga ditambahkan satu kali dalam setahun. Sedangkan bunga majemuk setengah tahunan adalah proses aritmatika untuk menentukan nilai akhir dari arus khas atau serangkaian arus kas apabila suku bunga ditambahkan dua kali dalam setahun.
G. Amortisasi Pinjaman
Merupakan suatu pinjaman yang akan
dibayarkan dalam periode yang sama panjangnya ( bulanan , kuartalan , atau
tahunan ). Digunakan untuk menghitung pembayaran pinjaman atau angsuran sampai
jatuh tempo.
- Dalam pembayaran angsuran terkandung : pembayaran cicilan hutang dan bunga.
- Angsuran berupa pembayaran yang tetap seperti anuitas.
- Pinjaman atau loan, diterima pada saat ini atau present value sehingga konsepnya menggunakan present value annuity (PVIFA).
- Pembayaran angsuran dapat dilakukan di awal periode atau diakhir periode.
- Formula dapat disesuaikan dengan antara annuity due atau ordinary annuity.
- Pada saat jatuh tempo nilai saldo hutang sama dengan nol atau mendekati nilai nol.
- Pembayaran bunga berdasarkan pada jumlah saldo pinjaman, sehingga bunga dapat semakin menurun.
Tidak ada komentar:
Posting Komentar